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Abstract
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ing. Optimal steady states differ from those obtained by the aggregate biomass
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1 Introduction

Optimal harvesting of biologically renewable populations (such as fish and
trees) is among the classical problems of resource economics. One line of research
that dates back to Baranov (1918) aims to utilize information on the population
age-structure in searching desirable levels of harvesting effort, or as is possible
in some cases, the age class to which the harvesting activity should be targeted.
The present study introduces an analytically solvable model for the optimal
harvest of age-structured fish populations and suggests that it should be possible
to proceed towards an analytical understanding comparable to that achieved for
models describing the harvestable resource by a single variable for population
biomass.

During the last forty years or more, mathematicians have analyzed
these questions under continuous age and time structure by applying the Lotka-
McKendrik model and its nonlinear generalizations. This setup leads to partial
differential equations and calls for extended versions of optimal control theory
(see e.g. Brokate 1985 or Hritonenko and Yatsenko 2007).

In fishery economics, the problem is approached by age-structured mod-
els specified in discrete time. Hannesson (1975) employs the classical Beverton-
Holt (1957) multicohort model and shows numerically that for North Atlantic
cod optimal harvesting takes the form of pulse fishing. In studies well known in
population ecology (Caswell 2001), Horwood and Whittle (1986) and Horwood
(1987) study the economics of harvesting age-structured populations applying
a specific linearization technique in numerical computation. Recently, Stage
(2006) applies an age-structured model to Namibian linefishing. Many papers
have applied age-structured models to various kinds of policy analysis with-
out attempting to solve the generic optimization problem (e.g. Sumaila 1997,
Steinshamn 1998 and Björndal et al. 2004, Moxnes 2005).

In addition to fishery economics, the discrete time model has been used
in studies concerning various management problems in fishery ecology. A semi-
nal paper is Walters (1969) that applies numerical dynamic programming. Much
of this literature is surveyed in Getz and Haight (1989) and Quinn and Deriso
(1999). With closer inspection, it becomes evident that the studies in fishery
ecology (excluding Walters 1969) solve the model under more or less ad hoc
types of restrictions, such as requiring harvest (or effort) to be constant over
time.

The discrete time approach for the age-structured fishery problem is
well-grounded due to the facts that both reproduction and fishing activities
may have clear seasonal characteristics. In addition, age-structured fish pop-
ulation models and data are normally given in a discrete time framework and
these models have a long history and numerous management applications in
population ecology ( Leslie 1945, Caswell 2001).

Economic research in this field has been almost exclusively based on
numerical computation. The reason for this has been the view that the age-
structured fishery problem is analytically intractable (e.g. Wilen 1985, Clark
1985, 1990, 2006)1. Compared to the biomass framework commonly applied
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in fishery economics (Gordon 1954, Plourde 1970), the complication follows
because of many state variables represented by age classes. In addition, some
age-structured specifications commonly applied in fishery ecology and economics
(such as the Beverton-Holt 1957 formulation) may not, as such, represent the
most fruitful basis for analytical work.

This study formulates the age-structured optimization model as a non-
linear programming problem that can be analyzed by standard methods. In
addition to the analytical approach, numerical computation is used to illustrate
the results and to shed light on some questions that are beyond explicit solutions.
The population model is in line with generic models applied in fishery ecology
(Walters and Martell 2004) and it can be viewed as a direct generalization of
the traditional "lumped parameter" model applied in fishery economics.

The general multiple age-class harvesting problem is complex, but there
are no obstacles to obtain the necessary optimality conditions using the Kuhn-
Tucher theorem. A fruitful setup for a theoretical analysis is obtained by assum-
ing only two age classes. Given knife-edge fishing technology, harvesting affects
only the older age class. In the absence of harvesting cost and under nonlinear
utility, the interior steady state is a unique (local) saddle point equilibrium with
clear comparative statics properties.

Under linear utility, the optimal solutions are found explicitly for ini-
tial states not too far from the steady state. It is shown that the constant
escapement policy does not represent optimal solution, similarly to the biomass
approach. Under nonselective fishing gear, it is proved that pulse fishing be-
comes the optimal solution. The intuition is that under certain conditions it
is possible to avoid catching fish that are too small (i.e. to prevent "growth
overfishing") by harvesting the population cyclically and only at periods when
the proportion of older age class is high.

Since the age-structured model can be viewed as a generalization of
the biomass model, it is possible to compare the optimal steady states of these
models. The steady states coincide only under zero discounting. Under knife
edge-selectivity, the biomass model yields larger steady state population, while
the reverse may hold when fishing gear is nonselective. These results imply
that the "optimal extinction" outcomes that have been extensively studied in
resource economics (e.g. Olson and Roy 1996, 2000) are dependent on whether
the resource is viewed as an aggregate biomass or as an age-structured system.

Assuming knife-edge selectivity and that only the oldest age class is
harvested enables the steady state equation to be obtained without limiting
the number of age classes. It is possible to prove the uniqueness of the steady
state and that it is a saddle point equilibrium under the low rate of interest
assumption. Numerical computation suggests that the general model version
exhibits similar smooth harvesting vs. pulse fishing features than does the
simplified model with two age classes.

The literature applying the discrete time age-structured model is almost
entirely based on numerical computation. The contribution of this paper is in
showing that there are no obstacles to study the generic age-structured opti-
mal harvesting problem analytically. The specific results presented are new in
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fisheries economic literature. Analytical work in this area helps to fulfil the cap
between fishery ecology and economics literature (cf. Hilborn and Walters 2001,
p. 472).2

The paper is organized as follows. Section two presents the model spec-
ification and the necessary optimality conditions. Section three considers the
specification with two age classes and presents results for steady states, their
stability and pulse fishing solutions. Section four develops the steady state equa-
tions for a model version with unlimited number of age classes and shows the
saddle point feature of this equilibrium. The final section further discusses the
discrete time age-structured model.

2 The age-structured problem and optimality condi-
tions

Let xst, s = 1, ..., n, t = 0, 1, ... denote the number of fish in age class s at
the beginning of period t. The number of eggs x0t is given by

x0t =
nX
s=1

γsxst. (1)

where the constants γs ≥ 0, s = 1, ..., n are fecundity parameters. The
recruits or the age class 1 fish are a function of the number of eggs, i.e.

x1,t+1 = ϕ(x0t), (2)

where ϕ is a recruitment function. Assume ϕ(0) = 0, ϕ0(0) ≤ 1, ϕ0 → 0
when x0 → ex0, and that ϕ is strictly concave when x0 ∈ [0, ex0]. As specific exam-
ples, this study applies the Beverton-Holt (1957) and Richer (1954) recruitment
function given as

ϕBH(x0t) = β1x0t/(1 + β2x0t), (3a)

ϕR(x0t) = β1x0te
−β2x0t . (3b)

The Beverton-Holt (1957) recruitment function (3a) is strictly concave, while
the Richer (1954) specification (3b) is concave for x0 ∈ [0, 2/β2] and convex for
x0 ∈ [2/β2,∞). Both are concave when ϕ0 > 0. Denote the number of fish
harvested from age class s at the end of periods by hst, s = 1, ..., n, t = 0, 1, ....
The development of the age classes s = 2, ..., n are given by

xs+1,t+1 = αsxst − hst, s = 1, ..., n− 2, t = 0, 1, ..., (4a)

xn,t+1 = αn−1xn−1,t − hn−1,t + αnxnt − hnt, t = 0, 1, ..., (4b)

where 0 < αs ≤ 1, s = 1, ..., n are survival parameters. Equation (4a) for
the oldest age class shows that fish remain in this age class if they have survived
natural mortality and fishing. The number of fish harvested from each age class
are specified as

4



hst = αsxstqs(Et), s = 1, ..., n, t = 0, 1, ..., (5)

where the age class specific functions qs(Et), s = 1, ..., n, t = 0, 1... give
fishing mortality. Assume that the functions qs, s = 1, ..., n are twice and
continuously differentiable, nondecreasing, concave and qs(0) = 0, qs(E) → bqs
as E → bEs, where 0 ≤ bqs ≤ 1 and bEs > 0 for s = 1, ..., n. One example that
satisfies these assumptions is

hst = αsxstbqs(1− e−σsEt), s = 1, ..., n, t = 0, 1, ..., (6)

where σs, s = 1, ..., n are nonnegative constants.
Given the weight of fish of age class s is φs ≥ 0, s = 1, ..., n the total

yield Ht is

Ht =
Xn

s=1
φshst. (7)

Obviously effort is restricted to be nonnegative, i.e. Et ≥ 0. In addition,
there are restrictions to the lower bound number of fish in each age class. Whenbqs = 1, s = 1, ..., n the lower bound restrictions become xs ≥ 0, s = 1, ...n.
However, under knife edge selectivity, for example qs(E) = bqs = 0 for some
s = 1, ..., j where j < n. More generally, when the maximum fishing mortality
is below one, it is not possible to harvest the given age class to zero. To take
these restrictions into account, the lower bounds are written as (cf. equations
2, 4a,b).

x1t ≥ 0, (8a)

xs+1,t+1 ≥ αsxst(1− bqs), s = 1, ..., n− 2, (8b)

xn,t+1 ≥ αn−1xn−1,t(1− bqn−1) + αnxnt(1− bqn). (8c)

Let U denote an increasing and concave function for the utility of total yield,
and C an increasing and convex function for fishing effort. A special case of
the utility function is U(H) = pH, where p is a market price of fish. It is
straightforward to specify an extension where the market price depends on the
size (or age) of fish. Given b = 1/(1+ r) is the discount factor and r the rate of
discount, the objective function to be maximized can be given as

max
{Et, xst, s=1,...,n, t=0,1,...}

V (x0) =
X∞

t=0
[U(Ht)− C(Et)] b

t. (9)

The optimization problem is now defined by (9) and by the constraints 2,
4a,b and 8a-c, where Ht, x0t, and hst, s = 1, ..., n are given by (1), (5) and (7).
In this study, this problem will be studied both analytically and numerically.
All functions are continuous with continuous first and second order derivatives
and it is possible to develop necessary conditions by applying the Kuhn-Tucker
theorem3. These conditions will be used to obtain analytical results. Beyond
this, the conditions are used by applying specific functions and parameter values
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to obtain additional understanding numerically. Independently of this, the op-
timal solutions will be computed by applying gradient-based numerical solution
methods. For these purposes, this study employes Knitro large scale optimiza-
tion software (Byrd et al. 1999, 2006) that includes state-of-the-art interior (or
barrier) and active set methods. By applying numerical methods it is possible to
illustrate the analytical results and, in addition, their application enables an ex-
amination of the optimal transition dynamics and higher dimensional cases that
are analytically untractable but interesting from the point of view of fisheries
itself.

Let λst, s = 1, ..., n, t = 0, 1, ... denote the Lagrange multipliers for the
constraints (2), (4a,b). The Lagrangian function and the optimality conditions
are

L =
X∞

t=0
bt{U [Pn

s=1 φsαsxstqs(Et)]− C(Et)+ (10)

λ1t [ϕ(
Pn

s=1 γsxst)− x1,t+1] +
Pn−2

s=1 λs+1,t{αsxst[1− qs(Et)]

−xs+1,t+1}+ λnt{αn−1xn−1,t[1− qn−1(Et)]+

αnxnt[1− qn(Et)]− xn,t+1}},

b−t
∂L

∂Et
= U 0 [

Pn
s=1 φsαsxstqs(Et)]

Pn
s=1 φsαsxstq

0
s(Et)− C0(Et)− (11)Pn−1

s=1 λs+1,tαsxstq
0
s(Et)− λnαnxntq

0
n(Et) ≤ 0, t = 0, 1, ...,

b−t
∂L

∂Et
Et = 0, Et ≥ 0, t = 0, 1, ..., (12)

b−t
∂L

∂x1,t+1
= bU 0

hXn

s=1
φsαsxs,t+1qs(Et+1)

i
φ1α1q1(Et+1)− λ1t+

bλ1,t+1ϕ
0(
Pn

s=1 γsxs,t+1)γ1 + bλ2,t+1α1[1− q1(Et+1)] ≤ 0, (13)

b−t
∂L

∂x1,t+1
x1,t+1 = 0, x1,t+1 ≥ 0, t = 0, 1, ..., (14)

b−t
∂L

∂xs+1,t+1
= bU 0

hXn

s=1
φsαsxs,t+1qs(Et+1)

i
φs+1αs+1qs+1(Et+1)+

bλ1,t+1ϕ
0(
Pn

s=1 γsxs,t+1)γs+1 − λs+1,t+

bλs+2,t+1αs+1[1− qs+1(Et+1)] ≤ 0, s = 1, ..., n− 2, t = 0, 1, ..., (15)

b−t
∂L

∂xs+1,t+1
[xs+1,t+1 − αsxst(1− bqs)] = 0, (16a)

xs+1,t+1 − αsxst(1− bqs) ≥ 0, s = 1, ..., n− 2, t = 0, 1, ..., (16b)
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b−t
∂L

∂xn,t+1
= bU 0

hXn

s=1
φsαsxs,t+1qs(Et+1)

i
φnαnqn(Et+1)+ (17)

bλ1,t+1ϕ
0(
Pn

s=1 γsxs,t+1)γn − λnt+

bλn,t+1αn[1− qn(Et+1)] ≤ 0, t = 0, 1, ...,

b−t
∂L

∂xn,t+1
[xn,t+1 − αn−1xn−1,t(1− bqn−1)− αnxnt(1− bqn)] = 0, (18a)

xn,t+1 − αn−1xn−1,t(1− bqn−1)− αnxnt(1− bqn) ≥ 0, t = 0, 1, .... (18b)

Next the optimal solutions are studied by proceeding from simple cases toward
the more complex any number of age classes specifications.

3 Simplest case with two age classes

3.1 Steady state analysis
Given n = 2 conditions (11), (13) and (17) take the form:

U 0(Ht)[φ1α1x1tq
0
1(Et) + φ2α2x2tq

0
2(Et)]− C 0(Et)

−λ2,t[α1x1tq01(Et) + α2x2tq
0
2(Et)] ≤ 0, t = 0, 1, ..., (19)

bU 0(Ht+1)φ1α1q1(Et+1)− λ1t + bλ1,t+1ϕ
0(γ1x1,t+1+

γ2x2,t+1)γ1 + bλ2,t+1α1[1− q1(Et+1)] ≤ 0, (20)

bU 0(Ht+1)φ2α2q2(Et+1) + bλ1,t+1ϕ
0(γ1x1,t+1 + γ2x2,t+1)γ2−

λ2t + bλ2,t+1α2[1− q2(Et+1)] ≤ 0, t = 0, 1, .... (21)

Assume a steady state where all the variables are constant over time, imply-
ing that the time subscripts can be cancelled. In addition, assume an interior
solution where conditions (19)-(21) hold as equalities. Lagrangian multipliers
λ1 and λ2 can be solved by (19) and (20) and eliminated from (21), which for
interpretation purposes can be written in the form

α1x1q
0
1 + α2x2q

0
2

∂U/∂E

"
∂U/∂x2 +

ϕ0γ2∂U/∂x1
(1 + r)(1− ϕ0γ1

1+r )

#
+

ϕ0γ2α1(1− q1)

(1 + r)(1− ϕ0γ1
1+r )

+α2(1−q2)−1 = r.

((22))
Note that (α1x1tq01 + α2x2tq

0
2)/(∂U/∂E) = 1/λ2. Equation (22) specifies an

equality between the internal rate of return of a marginal unit of x2 and the
rate of interest. The fact that the rate of interest exists in both sides of the
equation is a consequence of the delays in the the age class structure. The term

7



∂U/∂x2 denotes the return an increase in x2 causes in the harvest of x2. A
marginal increase in x2 causes an increase in recruitment and thus an increase
in x1 equal to ϕ0γ2. This increases the utility from harvest of x1 by ϕ0γ2∂U/∂x1.
This return must be discounted over one period because of one period delay.
In addition, the effect must be normalized by 1/[1 − ϕ0γ1/(1 + r)] because an
increase in x1 causes an increase in recruitment equal to ϕ0γ1 units of x1. Again,
this must be discounted over one period due to one period delay. Both terms
in the square brackets must be divided by λ2 to obtain the rate of return of x2.
Next, the term ϕ0γ2α1(1− q1) reflects the fact that an increase in x2 increases
x1 via recruitment, and this in turn increases x2 by the amount that is left
after natural and fishing mortality. Again, these effects must be divided by
(1+ r)[1−ϕ0γ1/(1+r)] because of the time delay and the recruitment effects of
x1. Finally, the term α2(1−q2) gives the share of one unit of x2 that is left after
natural mortality and fishing. From these effect one must deduct unity because
the age structured systems gives gross growth. Among other things, this steady
state equation suggests that in age structured models the rate of interest plays
a more complicated role than in models based on one single biomass variable.

It is illustrative to analyze the model when it is specified to certain
cases instead of studying the most general version that includes all the effects
simultaneously. The simplest possible case follows if juveniles do not belong to
spawning stock and do not have direct economic value, i.e. φ1 = 0, γ1 = 0. In
addition, assume that fishing is costless (C = 0) and that fishing gear has the
knife-edge selectivity property in the sense that q1 = 0. Let φ2 = 1. Under these
assumptions, the first term in the LHS of (22) simplifies to α2q2 and equation
(22) reduces to

α2 +
α1ϕ

0(x2γ2)γ2
1 + r

− 1 = r. (23a)

Given α2 < 1, it must hold that ϕ0 > 0 at equilibrium. Given ϕ is concave
when ϕ0 > 0, the steady state is unique. To give a simple intuition for (23a),
note that H = α1ϕ(x2γ2) + α2x2 − x2 yields the growth of x2 that can be
harvested under sustainability requirements. Thus, ∂H/∂x2 = α1ϕ

0γ2 +α2 − 1
is marginal growth. The term α1ϕ

0γ2 is the marginal effect on the next period
level of x2 that follows due to increased egg production and recruitment and
after natural mortality of x1. The term α2 gives the share one unit of x2 that
is left after natural mortality.4 From this, one must deduce 1 to obtain the
marginal net effect on growth. At an optimal steady state, the marginal growth
equals the rate of interest and α1ϕ

0γ2 must be discounted over one period.
Given a unique x2 satisfying (23a), the other variables are determined

by

x1 = ϕ(γ2x2), (23b)

q2(E) =
α1ϕ(γ2x2)

α2x2
+ 1− 1/α2. (23c)

H = α2x2q2(E). (23d)
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Implicit differentiation shows that increasing the rate of discount decreases
the levels of x2, x1 and H, but increases the level of fishing mortality q2(E) and
the level of effort E.

Equations (23a-d) specify an interior steady state in the sense that x2 >
0. The steady state may exist only if α2+α1ϕ0(0)γ2−1 > r. However, the steady
state is interior also in the sense that q2(E) ≤ 1 in (23c). This implies, for
example, that when the condition α2+α1ϕ

0(0)γ2/(1+ r)−1 > r is violated the
only remaining optimality candidate is not a solution that derives the population
to "extinction".

As specified by restrictions (8b,c), it is possible that there exists some
lowest attainable level of x2 that becomes binding. This is most evident under
knife-edge selectivity, where technological restrictions may prevent to harvest
the population below some minimum level. For bq2 = 1, equation (23c) yields:

µ(x2) ≡ x2 − α1ϕ(x2γ2) = 0, (24a)

∂µ/∂x2 = 1− α1ϕ
0(x2)γ2. (24b)

The equation µ(x2) = 0 has always at least one solution, i.e. x2∞ = 0. If
1 − α1ϕ

0(0)γ2 < 0, there exists another solution with some strictly positive x2
because ∂µ/∂x2 → 1 when x2 → ex2. This solution is the lowest attainable x2
and denote it as x2min. It must hold that α1ϕ0(x2min)γ2 < 1. The question is
whether x2min may be lower than the level of x2 that satisfies (23a). Recall
that the value of x2 that satisfies (23a) is higher the lower is the rate of interest.
Assuming r = 0, equation (23a) reads as 1 − α2 − α1ϕ

0(x2)γ2 = 0. Letting
α2 approach zero, yields by strict convexity of ϕ, that x2min is higher than
the level of x2 that solves (23a) under r = 0.Recall that x2min must satisfy
α1ϕ

0(x2min)γ2 < 1. Since the solution to (23a) decreases with the rate of
discount the outcome where x2min becomes binding is more likely the higher is
the rate of discount. These findings can be summarized as follows:

Proposition 1. Assume n = 2, φ1 = γ1 = q1 = C = 0, φ2 = 1, bq2 = 1
and that the recruitment function ϕ is concave when ϕ0 > 0. The interior steady
state is determined by (23a-d) and is unique. Total harvest and the number of
fish in both age classes are decreasing and the fishing mortality and effort are
increasing in the rate of interest. If α1ϕ(γ2x2)

α2x2
+1−1/α2 > 1, where x2 satisfies

(23a), the steady state is independent of the rate of discount and is determined
by (24a) and x1 = ϕ(x2).

For further interpretation of the boundary steady state given by (24a),
recall that this analysis considers the case of knife-edge selectivity (q1 = 0, q2(E) ≥
0). In addition, note that harvest occurs after spawning. Thus, recruits cannot
be harvested and the share of recruits that survive as two period old fish spawn
before they are all harvested. Under the assumption 1−α1ϕ

0(0)γ2 < 0, spawn-
ing of those fish that have just reach age class two is enough to maintain the
population. The lowest attainable steady state level becomes the optimal steady
state if the rate of discount is high enough. Increasing the rate of discount fur-
ther does not affect the steady state. When the lowest attainable steady state
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exceeds the MSY steady state, the optimal steady state is independent of the
rate of discount and is determined by the knife edge fishing technology and bi-
ological factors only. Compared to biomass models, and especially compared to
the interior steady state given by (22), the role of the rate of interest is now
smaller.

Assuming Beverton and Holt (1957) recruitment function, x2min is higher
than the solution for (23a), e.g. if r = 0, β1 = 1, β2 = 1/2, α1 = 9/10, α2 =
1/5, and γ2 > 25/18. However, if e.g. γ2 ≤ 10/9 (ceteris paribus), it follows
that x2min = 0 and the steady state level for x2 is determined by (23a).

3.2 Stability of steady states under nonlinear utility and no harvesting cost
To study the local dynamic properties of the interior steady state, write

equation (4b) for the case n = 2 and q1 = 0 as

x2,t+2 = α1ϕ(x2t) + α2x2,t+1 − α2x2,t+1q2(Et+1), (25)

where it is assumed that γ2 = 1 (without loosing generality). Since C =
q1 = 0, it is possible to take q2t as an optimized variable instead of Et. Write
q2t = qt. In addition, assume α1 = α2 = α. Since x1t can be eliminated by
x1,t+1 = ϕ(x2t), write x2t as xt for simplicity. By equation (25) it is possible to
obtain qt+1 = q(xt, xt+1, xt+2), where ∂q/∂xt = −αϕ0∂q/∂xt+2, ∂q/∂xt+1 =
−α(1 − qt+1)∂q/∂xt+2 and ∂q/∂xt+2 = −1/(αxt+1). Next, it is possible to
eliminate λ2t and λ2,t+1 by (19) and λ1,t+1 by (20). After these steps, equation
(21) takes the form

θ = b2αU 0[αxt+3qt+3(xt+2, xt+3, xt+4)]ϕ0(xt+2)+
bαU 0[αxt+2qt+2(xt+1, xt+2, xt+3)]− U 0[αxt+1qt+1(xt, xt+1, xt+2)] = 0. (26)

This is a fourth order nonlinear difference equation. Write its characteristic
equation as

w(u) = u4 + w4u
3 + w3u

2 + w2u+ w1 = 0, where (27a)

w1 =
∂θ/∂xt
∂θ/∂xt+4

=
1

b2
, (27b)

w2 =
∂θ/∂xt+1
∂θ/∂xt+4

=
1

b2ϕ0
− α

b
, (27c)

w3 =
∂θ/∂xt+2
∂θ/∂xt+4

= −αϕ0 − U 0ϕ00

U 00ϕ0
− α

bϕ0
− 1

b2αϕ0
, (27d)

w4 =
∂θ/∂xt+3
∂θ/∂xt+4

=
1

bϕ0
− α. (27e)

Note first that w(u) → ∞ as u → −∞ or u → ∞. Since w4 > 0 it follows
that w(0) > 0. By the steady state condition (23a):
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w(1) =
−U 0ϕ00
U 00ϕ0

< 0,

w(−1) =
−U 0ϕ00
U 00ϕ0

+
(b2αϕ0 − αb− 1)(1 + α− ϕ0α)

b2αϕ0
< 0.

The sign of w(−1) < 0 follows from the concavity of U and ϕ and because
at any interior steady state it must hold that (b2αϕ0−αb− 1) < 0 and αϕ0 < 1.
Thus, all the four roots of the characteristic equation are real and can be given
as: u4 < −1 < u3 < 0 < u2 < 1 < u1. Thus the steady state is a local saddle
point equilibrium.

Proposition 2. Given the assumptions of Proposition 1 and a strictly
concave utility function U, the interior steady state is a local saddle point.

Examples of optimal solutions are shown in Figure 1. Applying the
conditions (23a-d) the optimal steady state is x1∞ = 1.2127, x2 = 2.355, H∞ =
0.4991 and applying the above derived formulas for characteristic roots imply
r1 = −4.87, r2 = −0.207, r3 = 0.791, r4 = 1.277. Figure 1 is produced by the
numerical optimization methods explained in section 2. It shows five examples
of optimal solutions that converge toward the steady state. Excluding the origin,
it is likely that the steady state is globally stable for optimal solutions.

3.3 Optimal solution under linear utility and no harvesting cost
The steady state defined by (23a-d) is independent of the utility func-

tion. However, it is evident that the same does not hold for optimal ap-
proach paths. To study the optimal trasitionary dynamics when the utility
function is linear, assume U 0 = 1. For simplicity, maintain the assumptions
γ1 = φ1 = q1 = C = 0, φ2 = γ2 = 1. To find the initial states x10, x20
that allow the optimal solution to reach the steady state in one period, assume
x11 = x1∞ and x21 = x2∞, where the subscript ∞ refers to the steady state.
Since q1 = 0, it is again possible to take q2t as the control variable and denote
q2t = qt. By (2) and (4b) it must hold that

x11 = x1∞ = ϕ(x20), (28)

x21 = x2∞ = α1x10 + α2x20(1− q0). (29)

Thus, by (28) it holds that x20 = x2∞. In (29) q0 = 0 implies x10 = x2∞(1−
α2)/α1 and q0 = 1 that x10 = x2∞/α1. These are lower and higher bounds for
x10. Denote them by x10 and x10. (see Figure 2a). From (29) it follows that the
fishing mortality is given as

q0 = 1− (x2∞ − α1x10)

α2x20
. (30)

This solution is optimal because it satisfies (19)-(21) as equalities with λ2t =
1, t = 0, 1, ...

11



Consider next the possible initial states from which the steady state can
be reached optimally with two steps. Since x11 ∈ [x2∞(1 − α2)/α1, x2∞/α1]
must hold after the first step, it follows by x1,t+1 = ϕ(x2t) that the region for
x20 is defined by

x2∞/α1 ≤ ϕ(x20) ≤ x2∞(1− α2)/α1. (31)

Denote these lower and upper bounds by x20 and x20 accordingly (see Figure
1a). To reach the steady state with two steps it must also hold that x21 = x2∞,
i.e. that x2∞ = α1x10 + α2x20(1 − q0). The highest possible level for x10 is
obtained when q0 = 1, and this level equals x2∞/α1. Finally, the left boundary
of the region is found by setting q0 = 0 implying a boundary x20 = (x2∞ −
α1x10)/α2 (Figure 2a). By construction of these boundaries the initial fishing
mortality that implies x21 = x2∞, is again given by (30). This solution satisfies
conditions (19)-(21) since x21 = x2∞ and it is possible to set λ2t = 1, t = 0, 1, ....
These findings can be summarized as:

Proposition 3. Given the assumptions of Proposition 1 and that U 0 = 1
and that an interior steady state exists, it is optimal to reach the steady state
in one period if x20 = x2∞ and x10 ∈ [x2∞(1− α2)/α1, x2∞/α1]. The optimal
solution reaches the steady state in two periods if the initial state satisfies x20 ≥
(x2∞ − α1x10)/α2, x2∞/α1 ≤ ϕ(x20) ≤ x2∞(1− α2)/α1 and x20 6= x2∞.

Given the initial state that allows the optimal solution to reach the
steady state in one or two steps, the solution is an example of constant escape-
ment policy (see e.g. Spence 1973). Within the constant escapement policy,
the population level after the harvest equals to its optimal after harvest steady
state level. Such a policy is optimal for the biomass model under a linear ob-
jective and fishery production functions, and given that the beginning of period
biomass level is not too low. The constant escapement policy means that the
steady state is reached in one step. A similar policy may well be optimal for the
age-structured model but with a more restrictive set of initial states. If escape-
ment is interpreted to refer to the number of fish in age class 2, escapement is
constant only for those initial states from which x2∞ can be reached optimally
with one step. This is clearly not possible, if x20 > x20 (or x10 > x2∞/α1), for
example. The reason why it takes more periods to reach the steady state is that
high enough initial x20 implies high x11 and as an implication an excessively
high x22, i.e. x22 > x2∞. Compared to the biomass model, these complications
are consequences of the age class structure.

An example demonstrating Proposition 3 is shown in Figure 2a,b. With
the parameter values given, it follows that x2∞ ' 1.8644, x1∞ ' 1.0680, x10 '
0.4661, x10 ' 2.3304, x20 ' 0.5729, x20 ' 34.3617. Figure 2a shows the sets
of initial states that allow the steady state to become optimal in one or two
periods. In addition, Figure 1a shows 5 examples where the steady state is
reached in two periods. When the initial state is out of these sets it takes more
than two periods to reach the steady state optimally. Examples of such solutions
are shown in Figure 1b. It is likely that (excluding x10 = x20 = 0) the optimal
steady state is globally stable for optimal solutions.
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3.4 Steady state under growth overfishing
Assume next that q1 > 0 but maintain the assumptions φ1 = γ1 = C =

0, φ2 = 1. Thus, in this case fishing gear is nonselective in spite of the fact that
age class one fish do not have commercial value and do not yet form part of the
spawning stock. Fishery ecologists call such harvesting "growth overfishing",
since fish are taken to be too small when harvested. Equation (22) for the
optimal steady state obtains the form

q2(E)α1x1q
0
1(E)

x2q02(E)
+

α1ϕ
0(γ2x2)γ2[1− q1(E)]

1 + r
+ α2 − 1 = r, (32)

where E is determined by x2 − α1ϕ(x2)[1 − q1(E)] − α2x2[1 − q2(E)] = 0.
The assumption q1(E) = τq2(E), where 0 ≤ τ ≤ 1 and the fact x1 = ϕ(x2)
simplifies (32) to

Ψ =
α1τq2
x2

·
ϕ− ϕ0γ2x2

1 + r

¸
+

α1ϕ
0(γ2x2)γ2
1 + r

+ α2 − 1 = r, (33)

where q2 = (α1ϕ + x2α2 − x2)/(α1ϕτ + α2x2) and ϕ − ϕ0γ2x2/(1 + r) is
positive by the concavity of ϕ. Since the new expression ·

· [·] not existing in
(23a) is positive, the steady state level of x2 must be higher compared to the case
q1 = 0. Differentiation and the concavity of ϕ show that ∂Ψ/∂x2 < 0, implying
that the optimal steady state is unique. In addition, since ∂τq2/∂τ > 0, it
follows that ∂Ψ/∂τ > 0, implying from the implicit function theorem that the
steady state level of x2 is increasing in τ . In addition, differentiation shows that
∂q2/∂τ < 0 and ∂H/∂τ = ∂(α2x2q2)/∂τ < 0. These findings can be summarized
as:

Proposition 4. Given that φ1 = γ1 = C = 0, φ2 = 1 and q1(E) =
τq2(E), where 0 ≤ τ ≤ 1,the optimal steady state is unique and the steady state
levels of x1 and x2 are increasing in τ , while the steady state levels of q2 and
H are decreasing in τ .

The stability of the steady state can be studied by applying similar
steps as in section 3. However, the expressions will become rather tedious.
Numerical computation of the characteristic roots shows that under strictly
concave utility the steady state may still have the local saddle point property.
However, setting τ = 1, specifying U = Hσ and letting σ → 1 finally leads to an
outcome with only one stable root. This follows, for example, if U(H) = Hσ,
ϕ(x2) = x2/(1+ 0.4x2), α1 = α2 = 0.8, b = τ = 1 and 0.9315 < σ < 1. In these
cases, it is optimal to reach the steady state only in hairline cases where the
initial state x10, x20 satisfies a specific functional relationship. The next task is
to examine other possibilities for the long run equilibria.

3.5 Pulse fishing and cyclical equilibria under growth overfishing
Instead of a smooth equilibrium with constant harvest and population

levels over time, another candidate for the long run equilibrium is the stationary
cycle. This type of solution is known as pulse fishing (Walters 1969, Hannesson
1975) and intuitively it may become optimal due to the problem of growth
overfishing.
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Proposition 4. Under the assumptions φ1 = γ1 = C = 0, U 0 = φ2 =
γ2 = 1, q1 = q2, α1 = α2, α2 ∈ (1/2, 1), r = 0 and the Beverton-Holt recruitment
function ϕ = β1x2t/(1+β2x2t) with β1 = 1 there exists an interior steady state
and an optimal cyclical solution with cycle length equal to two periods.
Proof: Appendix.

The analysis for the existence of the cyclical equilibrium leads to a
ten equation nonlinear system. Due to its complexity, Proposition 4 shows
the existence of the cyclical equilibrium under zero rate of interest and the
Beverton-Holt specification. However, numerical analysis suggests that the cycle
represents the optimal solution under a broad range of parameter values and, for
example, under positive rate of interest. Simultaneously with the equilibrium
cycle there exists a smooth steady state defined by equation (33). Depending,
for example, on the convexity of the utility function, this equilibrium may have
the saddle point characteristics or it may be totally unstable. Let us develop
further intuition by studying a numerical example.

3.6 Numerical example of pulse fishing
To consider a numerical example assume: β1 = 1, β2 = 0.4, α = 0.8,

q1 = q2 = 1, b = 1.Using equation (33) yields the steady state: x1 ' 1.344, x2 '
2.906, q ' 0.145, and H ' 0.3378. For computing the equilibrium cycle using
equation (A11, see Appendix) yields x22 ' 3.044, x21 ' 2.432, x11 ' 1.373,
x12 ' 1.233, H1 ' 0, H2 ' 0.704. In addition, the inequality (A12) obtains
a value equal to −1.05. Note that in the cyclical equilibrium, the average per
period yield, H2/2 ' 0.352 is higher that the constant per period yield 0.3378
in the smooth equilibrium. Examples of solutions using numerical optimization
methods (see section 2) are shown in Figure 3a,b,c. In Figure 3a, the solid lines
show four solutions that all converge to the cyclical equilibrium that switches
between the two circles. The solid line in Figure 3b shows the time path for one
of the solutions. If the utility function is made strictly concave, the steady state
with smooth harvest and population level becomes the long run equilibrium
instead of the cycle. This is shown in Figure 3a by the two dashed lines that
converge to the smooth equilibrium. These solutions have the same initial state
as the associated solid lines but are based on U = H0.5. An example of optimal
yield over time is shown by the dashed line in Figure 3b. Assuming U = H0.93

yields the solution that converges toward an interior limit cycle and that is given
by the dotted line in Figure 3b.

Figure 3c shows the cyclical solution in effort, x1, x2 state space. The
essential feature of the solution is that effort is zero at the periods when the
level of x1 is high and the level of x2 is low. Consequently, the next period
level of x2 is high and x1 is low and then the optimal effort is high. Thus, this
pulse fishing strategy leads to a lower level of growth overfishing compared to
solutions with smooth effort and fishing mortalities over time.

It is assumed in Proposition 4 that the rate of interest is zero. However,
the cyclical equilibrium exists and also represents the optimal long run equilib-
rium under wide range of discounting. Figure 3d shows the lower and upper
levels for the number of age class 2 fish as functions of the rates of interest.
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The smooth equilibrium with only one stable root is shown by dashed line for
comparison.

3.7 Positive harvesting cost
If C > 0 the steady state equation becomes more complicated. Assum-

ing q1 = γ1 = 0 and φ2 = 1, equation (22) can be written as

Υ ≡ C0α2q2
U 0α2x2q02 − C 0

+ α2 +
α1ϕ

0(x2γ2)γ2
1 + r

− 1 = r. (34)

Compared to (23a), the additional term in (34) reflects the marginal rate of
return that follows since an increase in x2 causes an increase in marginal utility of
harvest without an increase in effort cost. Since the expression C 0α2q2/(U 0α2x2q02−
C 0) in the LHS of (34) is positive, ϕ0 must be lower and x∞2 must higher in order
for (34) to hold compared to the case with zero effort cost. For studying the
uniqueness of the steady state, note that q(x2) = 1− [x2−α1ϕ(x2)]/(α2x2) and
differentiate the LHS of (34) with respect to x2 :

∂Υ

∂x2
=

½
(C 00q0α2q + C0α2q0)(U 00α2x2q − C 0)−

C 0α2q[U 00α2(x2q0 + q)α2x2 + U 0α2 − C00q0]

¾
/(U 0α2q − C 0)2.

Since q0 < 0 and x2q
0 + q may have any sign, the steady state may not be

unique. However,. if e.g. U = pH, where p is the exogenous market price, it
follows that U 00 = 0 and ∂Υ/∂x2 < 0 and that the steady state is unique.

The stability properties of the steady states can be studied by similar
steps as in section 3.2. If the steady state is unique, one may expect saddle
point stability if the possibility of stationary cycles can be ruled out. In the
case of multiple steady states, some of the equilibria may be totally unstable.

3.8 Comparing the optimal steady states for the age-structured and bio-
mass models
The surplus production model can be viewed as a simplification of the age-

structured framework. This makes it possible to analyze how the age-structured
information changes the optimal solutions from those that are based on the ag-
gregate biomass information. The simplest possibility is to compare the steady
states. For this purpose, assume q1 = φ1 = C = 0 and γ1 > 0, γ2 > 0. In
addition, assume that the lowest attainable level of x2 is zero. Under these
assumptions, any steady state must satisfy

x1 = ϕ(γ1x1 + γ2x2), (35)

x2 = α1x1 + α2x2[1− q2(E)]. (36)

Equation (35) can be used to derive x1 as a function of x2. Denote this as
x1 = x1(x2), where x01 = ϕ0γ2/(1− ϕ0γ1) > 0. Equation (36) can be written as

H = α1ϕ[γ1x1(x2) + γ2x2] + α2x2 − x2, (37)
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where H[= α2x2q2(E)] is the equilibrium yield as a function of x2. Since x1
is not harvestable and its market value is zero (q1 = φ1 = 0), it is natural to take
x2 to represent the biomass variable in the surplus production model. Thus,
equation (37) can be considered to represent an equilibrium harvest as a function
as biomass. Denote this relationship by H = F (x2). Given the harvesting cost is
zero, the well known optimal steady state condition (e.g. Plourde 1970) for the
surplus production model satisfies F 0(x2) = r and H = F (x2) . Differentiation
and some cancellation yields

∂H

∂x2
= r =⇒ α1ϕ

0[γ1x1(x2) + γ2x2]γ2
1− ϕ0[γ1x1(x2) + γ2x2]γ1

+ α2 − 1 = r. (38)

From (22) the steady state equation for the age-structured model is

α1ϕ
0[γ1x1(x2) + γ2x2]γ2

(1 + r) {1− bϕ0[γ1x1(x2) + γ2x2]} γ1
+ α2 − 1 = r. (39)

Differentiation shows that the term η ≡ α1ϕ
0γ2/[(1 + r)(1 − bϕ0γ1)] is de-

creasing in x2. Thus, the equilibrium for both the surplus production and the
biomass models are unique. Next ∂η/∂r < 0, implying that the level of x2
defined by the equilibrium condition for the age-structured model is lower than
the equilibrium defined by the surplus production model.

Assume next that φ1 = γ1 = C = 0, φ2 = 1 and q1 = τq2. The steady
state must satisfy x2 = α1ϕ(x2γ2)(1 − τq2)+ α2x2(1 − q2). This yields q2 =
[α1ϕ(x2γ2)+ x2(α2− 1)]/[α1ϕ(x2γ2)τ+ α2x2]. By using the fact H = α2x2q2
one obtains

H = F (x2) =
α2x2α1ϕ(x2γ2) + α2x

2
2(α2 − 1)

α1ϕ(x2γ2)τ + α2x2
. (40)

Differentiation (40) and applying the expression for q2 enables to write the
condition F 0(x2) = r to the form½

α1τq2
x2

[ϕ− ϕ0γ2x2] + α1ϕ
0γ2 + α2 − 1

¾
α2x2

α1ϕτ + α2x2
= r. (41)

Comparing (41) and the condition for the age structured specification (33)
shows that there are two differences with the steady state conditions. In (33), the
term α1ϕ

0γ2(1−τq2) is divided by 1+r and in (33) the term α2x2/[α1ϕ(x2)τ +
α2x2] does not exist. Note that if r = 0, the two conditions are equivalent.
Assume r > 0 and 0 < τ ≤ 1. Recall that the LHS of (33) is decreasing
in x2. Taking into account that 0 < α2x2/[α1ϕ(x2)τ + α2x2], the fact that
1 + r does not exist in (41) implies a positive effect on the level of x2 that
solves (41). However, since α2x2/[α1ϕ(x2)τ + α2x2] < 1, the effect of the other
difference between the equations is reverse. Whether the steady state level of
x2 determined by condition (41) is lower or higher than the equilibrium level
for the age-structured model depends, for example, on the level of τ .

A numerical comparison of these equilibria is presented in Figure 4a,b.
Given nonselective gear (τ = 1), the age structured model implies larger steady
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state levels compared to the biomass model (Figure 4a). The situation is reverse
under knife-edge selectivity (τ = 1) (Figure 4b). Thus, the age-structured model
implies a different steady state compared to the biomass model that is based
on a single aggregate variable. This also implies that the extensively studied
"optimal extinction" question (e.g. Olson and Roy 1996, 2000) is dependent on
whether the age structured information is included in the analysis.

4 Equilibria with any number of age classes

4.1 Steady state analysis
With any number of age classes, the necessary conditions and the equations

for steady states become complicated. However, it is still possible to develop
steady state equations for some simplified cases. For this purpose, write the
steady state for the age-structured system as

xs+1 = µsxs, s = 1, ..., n− 1 where (42a)

µs = αs(1− qs), s = 1, ..., n− 2, (42b)

µn−1 = αn−1(1− qn−1)/[1− αn(1− qn)]. (42c)

Next, using (42a-c) it is possible to write all the age classes s > 1 as linear
functions of the number of fish in age class 1:

xs∞ = Φsx1, s = 2, ..., n where

Φs =
Qs−1

i=1 µi, s = 2, ..., n.

The equilibrium number of eggs equals x0 = x1
Pn

s=1 γsΦs, where Φ1 ≡ 1.
Denote

Pn
s=1 γsΦs ≡ R. Next, the number of fish in the age class 1 is specified

as

x1∞ = ϕ(x1R). (43)

For the equilibrium level of x1 to be strictly positive it is necessary that
1− ϕ0(0)R < 0.

To proceed for analyzing the rest of the steady state equations assume
qs = φs = 0, s = 1, ..., n − 1, qn > 0, C > 0 and φn = 1. Thus, harvesting
technology has knife-edge characteristics and only fish in age class n and older
belong to the spawning stock. This model specification extends the case studied
in sections 3.1 and 3.2 and comes close to the delay difference model that is
well known in fishery ecology (see e.g. Hilborn and Walters 2001). The only
difference here is that all fish in age class n are of equal size, while in the
population model analyzed by Hilborn and Walters (2001) the possibility that
fish grow in age class n is included.

Applying (43) it is possible to obtain x1 as a decreasing function of qn :

dx1
dqn

=
ϕ0x1∂R/∂qn
1− ϕ0R

< 0,

17



where ∂R/∂qn = −
Qn−2

i=1
αn−1αn

1−αn(1−qn) < 0. Denote this function by x1 =

x1(qn). The remaining optimality conditions are

U 0αnxnq0n − C 0 − λnαnxnq
0
n = 0, (44)

−λs + bλ1ϕ
0γs + bλs+1αs = 0, s = 1, ..., n− 1, (45)

bU 0αnqn + bλ1ϕ
0γn − λn + bλnαn(1− qn) = 0. (46)

Equations (45) can be solved recursively starting from s = n − 1 and pro-
ceeding toward s = 1. Each Lagrangian multiplier is then given as a function
of λ1 and λn and finally the equation for s = 1 defines λ1 as a function of λn.
Using this result, λ1 can then be eliminated from (46). Dividing (46) by bλn
and solving (44) for λn yields:

U 0α2nxnqnq
0
n

U 0αnxnq0n − C 0
+

ϕ0γnbn−1
Qn−1

j=1 αn−j

1− ϕ0
nPn−1

j=1 b
n−1γj

Qj−1
k=1 αk−1

o +αn(1− qn) = 1/b. (47)

Equation (47) can be viewed to contain qn as its single variable since all the
state variables, as well as E in C 0, can be given as functions of qn. If C0 = 0, this
equation has a unique solution since the first quotient in the LHS cancels with
−αnqn and the remaining part is decreasing in x1 and increasing with qn.

4.2 Stability of the steady state
For analyzing the stability of the optimal steady state assume that γs =

0, s = 1, ..., n− 1, γn = 1, qs = 0, s = 1, ..., n− 1. In addition, assume C = 0.
It is now possible to take qnt directly as the control variable. Denote it qnt ≡ qt
for simplicity. Given an interior solution, the conditions (11)-(18) take the form

U 0(αnxntqt)αnxnt − λntαnxnt = 0, (48)

−λ1t + bλ2,t+1α1 = 0, (49)

−λ2t + bλ3,t+1α1 = 0, (50)

· · ·,
λn−1,t + bλn,t+1αn−1 = 0, (51)

bU 0(αnxn,t+1qt+1)αnqt+1 + bλ1,t+1ϕ
0(xn,t+1)− λnt + αnbλn,t+1(1− qt+1) = 0.

(52)

Equations (49)-(51) yield λnt = λ1,t−(n−1)/(bn−1
Qn−1

i=1 αi) and λ1,t+1 =

λn,t+nσ, where σ = bn−1
Qn−1

i=1 αi. In addition, the conditions x1,t+1 = ϕ(xnt),
x2,t+1 = x1tα1, ..., xn,t+1 = αn−1xn−1,t+ αnxnt(1− qt) yield

qt = 1− xn,t+1 − σϕ(xn,t−n+1)
αnxnt

.
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Note from (1) that λnt = U 0(αnxntqt). It is now possible to eliminate λ1,t+1,
λnt and qt from (52) and obtain the following difference equation for xnt :

Ω = bnϕ0(xt+2)σU 0
½
αnxt+n+1

·
1− xt+n+2 − σϕ(xt+2)

αnxt+n+1

¸¾
−U 0

½
αnxt+1

·
1− xt+2 − σϕ(xt−n+2)

αnxt+1

¸¾
+αnbU

0
½
αnxt+2

·
1− xt+3 − σϕ(xt−n+3)

αnxt+2

¸¾
,

where xnt = xt for simplicity. This is a nonlinear difference equation of order
2n. To form its characteristic equation compute:

w1 =
∂Ω/∂xt−n+2
∂Ω/xt+n+2

=
1

bn
,

w2 =
∂Ω/∂xt−n+3
∂Ω/xt+n+2

= − αn
bn−1

,

w3 =
∂Ω/∂xt+1
∂Ω/xt+n+2

=
αn

bnϕ0σ
,

w4 =
∂Ω/∂xt+2
∂Ω/xt+n+2

= − α2n
bn−1ϕ0σ

− σϕ0 − 1

bnϕ0σ
− ϕ00U 0

ϕ0U 00
,

w5 =
∂Ω/∂xt+3
∂Ω/xt+n+2

=
αn

bn−1ϕ0σ
,

w6 =
∂Ω/∂xt+n+1
∂Ω/xt+n+2

= −αn.

The characteristic polynomial can be written as

Φ(u) = u2n + w6u
2n−1 + w5u

n+1 + w4u
n + w3u

n−1 + w2u+ w1 = 0. (53)

Let r = 0, i.e. b = 1. Direct substitution shows that if u is a root of (53)
also 1/r is a root of (53). In addition, by direct substitution and the use of the
steady state condition bn−1ϕ0σ + αn − 1/b = 0 it follows that

Φ(1) = −U
0ϕ00

U 00ϕ0
< 0,

Φ(−1) = −U
0ϕ00

U 00ϕ0
− 4(ϕ

0σ − 1)2
4σ

< 0, when n is even

Φ(−1) = U 0ϕ00

U 00ϕ0
+
(ϕ0σ)2 + 2ϕ0σ(αn + 1) + α2n + 2αn + 1

ϕ0σ
> 0.
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The product of the roots equal 1 (= w1 by Vieta’s formula). The number
of roots is 2n, i.e. even. Since Φ(1) 6= 0 and Φ(−1) 6= 0 it follows that half of
the roots lie inside the unit circle (centered at the origin) of the complex plane
and half of the roots lie outside the unit circle (centered at the origin) of the
complex plane. Thus, the steady state is a local saddle point when r = 0. Since
Φ is continuously differentiable with respect to r, the saddle point property must
hold for positive levels of r that are small enough. This proves the following:
Proposition 5. Given qs = φs = 0, s = 1, ..., n − 1, qn > 0, and C = 0 the

steady state is a local saddle point when r ≥ 0 is small enough.
The saddle point feature implies that the optimal solution converges

toward the steady state equilibrium at least when the rate of interest is not
too high and the initial state is not too far from the steady state. Note that
this specification is a direct extension of the formulation studied in proposition
2, where under the assumption n = 2 it was possible to show that the saddle
point feature holds independently of the rate of discount. Since the steady state
is unique, it is likely that optimal solutions converge toward the equilibrium
even for cases of large deviations from the steady state. Another question is
the nature of optimal solutions when the rate of discount is not small. Both of
these questions are next studied applying numerical optimization methods.

4.3 Numerical examples for populations with any number of age classes
Proposition 5 shows the local stability properties of the steady state under

low rates of interest. Figure 5a shows the development of three optimal solutions
over time. The solutions differ only because of their different initial age-class
structures. All the solutions converge toward the same equilibrium. Figure
5b shows the same solutions in x8,H state space. Both Figures demonstrate
the nonmonotonicity of the optimal path. Figure 5b also suggests that there
may be a linear boundary containing the optimal steady state such that the
optimal spawning stock-yield combinations exist below or on this boundary.
The solutions exist below the boundary if the number of fish in the age classes
1, ..., n − 1 are low, implying that it is optimal to keep the harvest at a low
level even if the spawning stock and harvestable age class is near its long run
optimal steady state level. Conversely, if the number of fish in age classes
s = 1, ..., n− 1 is higher, the optimal yield tends to be an approximately linear
function of the spawning stock. These solutions reflect the fact that age classes
s = 1, ..., n−1 contain valuable information on future harvesting possibilities and
that information partly determines the optimal harvest at the present period.

Finally, Figure 6 depicts three optimal solutions for the general model
without simplifications. There are eight age classes. The dotted line shows the
pulse fishing solution where fishing gear is nonselective and young age classes
do not have commercial value. This outcome is in line with Proposition 4. If
the utility function is made more concave, the pulse fishing property becomes
somewhat smoother but the solution may still have a limit cycle property (solid
line). The solution given by the dashed line shows that the pulse fishing strategy
completely disappears if the young classes are commercially valuable.
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5 Conclusions

The aim of this paper has been to present analytical results and some nu-
merical computation illustrations on optimal harvesting of age-structured fish
populations. It is shown that the complexity of the multiple age class prob-
lem can be reduced by deriving results for model specification with only two
age classes. It may be expected that the results obtained for this simplest case
at least partially carry over to the specifications with higher number of age
classes.5 The paper takes some steps toward this direction by deriving a steady
state equation and stability analysis for one important special case of the general
model. In contrast to some opinions (Wilen 1985, Hilborn and Walters 2001,
Clark 1985, 1990, 2006), the age structured model is found to be analytically
tractable.

Some potential extensions are worth noting. The cyclical equilibrium
is proved to exist given a zero rate of interest and a recruitment function by
Beverton and Holt (1957). Numerical examples suggests that the cyclical equi-
librium may be optimal under positive rates of interest and a Richer (1954)
recruitment function. Thus, generalizations of the analytical result should be
possible. Given knife-edge selectivity and no harvesting cost, the steady state
for the two age class specification was shown to be a local saddle point indepen-
dently of the rate of interest. The analogous result for the any number of age
classes specification was proved under low rate of interest, but generalizations
should again be possible. Finally, there should be no obstacles to study the
empirically highly relevant case with stochastic recruitment and to derive some
analytical results for the two age classes specification and numerical results for
more complex age distributions.

Footnotes:
1Wilen (1985) writes: "If we are interested in real-world management prob-

lems, we are inevitably forced to disaggregate and to pick up the more compli-
cated features of mixed aged populations. Unfortunately, these appear to be
the most intractable analytically".

2In their extensively used book, Hilborn and Walters (2001) make a sharp
distinction between analytically and numerically solvable models in fishery man-
agement. They write that one state variable biomass models are fruitful for
elegant analytical solutions but too simple for people working in fisheries man-
agement. Models with explicit age structure are considered to be useful for
practical management problems but beyond analytical methods.

3On the use of the Kuhn-Tucker theorem or the Lagrange method for solving
discrete time dynamic optimization problems, see e.g. Mercenier and Michel
(1994).

4Note that given C = 0, the term −q2α2 cancels out with the direct effect
an increase of x2 has on the harvest of x2.

5This is more or less the case in specific class of age structured models in
forest economics (cf. Salo and Tahvonen 2002, 2003).

21



Appendix. Proof of Proposition 4.
Since q1t = q2t it is possible to take q2t as the optimized variable. Write

q2t = qt for simplicity. The conditions (19)-(21) take the form

αx2t − λ2tα(x1t + x2t) ≤ 0, (A1)

−λ1t + bλ2,t+1α(1− qt+1) ≤ 0, (A2)

b[αqt+1 + λ1,t+1ϕ
0(x2,t+1) + λ2,t+1α(1− qt+1)]− λ2t ≤ 0. (A3)

The purpose is to first show that a two period cycle satisfies the necessary
optimality conditions. For this end set q1 = 0, q2 > 0, x1i, x2i > 0, i = 1, 2
(Note that q1 refers to period 1 fishing mortality etc.). This leads to the system

αx2i − λ2iα(x1i + x2i) ≤ 0, i = 1, 2, (A4)

−λ1i + bλ2,i+1α(1− qi+1) = 0, i = 1, 2, (A5)

bαqi+1 + bλ1,i+1ϕ
0(x2,i+1) + bλ2,i+1α(1− qi+1)− λ2i = 0, i = 1, 2, (A6)

x1i = ϕ(x2,i+1), i = 1, 2, (A7)

x2i = αx1,i+1 − αx1,i+1qi+1 + αx2,i+1 − αx2,i+1qi+1, i = 1, 2, (A8)

where, due to two period cycle, it is written that q3 = q1, x13 = x11, etc.
This is a 10 equations and variables system and the aim is to eliminate all
variables excluding x22 and study the remaining equation (A6) for i = 2.

Eliminating x11, x12, x21 from (A7) and (A8) yields

x22/α− ϕ(x22)− α{ϕ[x22/α− ϕ(x22)] + x22}(1− q) = 0. (A9)

This equation defines q as an decreasing function of x22. Next λ11 and λ12
can be eliminated from (A6) using (A5). From (A4) it follows that λ22 =
x22/(x21+x22) and λ21 ≥ x21/(x11+x21). After eliminating λ11 from equation
(A6) written for i = 1 one obtains an equation for λ21 which can be then be
eliminated from (A6) written for i = 2. After these steps equation (A6) for i = 2
can be written as

x22
ϕ(x21) + x22

½
bα(1− q) +

[1− b2α(1− q)ϕ0(x21)][b2αϕ0(x22)− 1]
bα

¾
+ bαq = 0,

(A10)
where x21 = x22/α−ϕ(x22). Since (A9) defines q as a function of x22 equation

(A5) includes x22 as its single variable. The task is to study the existence
and uniqueness of solutions for equation (A10). Under the assumptions ϕ =
β1x22/(1 + βx2), β1 = 1, and b = 1 (A10) becomes a fourth order polynomial

P (x22) ≡ β42(α
2 − 1)x422 + 4β32(α2 − 1)x322 + β22(6α

2 + 3α− 5)x222
+2β2(α

2 + α− 1)x22 + α(2α− 1) = 0. (A11)
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The assumption that α > 1
2 implies that α(2α− 1) > 0 and β42(α

2 − 1) < 0.
Thus P (0) > 0 and P (x22) → −∞ as x22 → ∞ showing the existence of at
least one positive real root. Note that the coefficients for x422 and x322 are both
negative. Thus, the sign of the coefficients cannot change three times ruling out
the possibility of three positive real roots (cf. Descartes´ rule of signs). This
shows that there exists only one positive real root for equation (A11).

The remaining necessary condition that must be satisfied is (A4) written
for i = 1, i.e. λ12 ≥ x21/(x11 + x21). When this equation is written for x22 it
takes the form

β32(α−1)x322−β22(α2−3α+2)x222+β2(1−α)(2α−1)x22−α(2α−1) ≤ 0. (A12)
This condition is satisfied if the third order polynomial is negative for x22 ≥

0. Since β32(α − 1) < 0 and −α(2α − 1) < 0 the polynomial obtains negative
values for x22 ≥ 0 or has two positive real roots. Since −β22(α2−3α+2) ≤ 0 for
0 ≤ α ≤ 1 the Descartes ´ rule of signs rules out the possibility of two positive
real roots implying that condition (A12) is satisfied. Thus it is shown that there
exists a cyclical stationary solution that satisfies all the KT conditions. Finally,
under the assumptions applied above equation (31) yields x2∞ =

√
2[
√
1− α+√

2(α − 1)]/[β2(α + 1)]. In addition: q = (
√
2α
√
1− α + α − 1)/[α(α + 1)].

Given α ∈ (1/2, 1), it follows that in addition to equilibrium cycle there exists
an unique interior steady state solution for x1, x2 and q.¥
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Parameter values: r=0.01, U=H0.5, C=0, q1=0,q2=1,α1=α2=0.8,

                           ϕ(x2)=x2/(1+0.4x2), φ1=0, φ2=3

Figure 1. Stability of interior steady state
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Figure 2a. Local stability of the interior steady state under linear utility
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Figure 2b. Examples of solutions that reach the steady state within more than two periods
                 Parameter values: same as in Figure 1a
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Figure 3a,b. Optimal cycle and the effect of strictly concave utility function
In Figure 3a: solid lines U=H, dashed lines U=H0.5

In Figure 3b: solid line U=H, dotted line U=H0.93, dashed line U=H0.5

In Figures 3a-d: ϕ(x2)=x2/(1+0.4x2), α1=α2=0.8
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Figure 3c. Optimal cycle in effort, 
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Figure 5a,b. Optimal solutions with three initial age distributions
Parameters:  ϕ(x8)=x8/(1+0.6x8), U=H0.9, r=0.01, q8=1, α=0.8, C=0
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